
SEPO: Optimizing RISC-V using Symbolic Execution
Sora Kanosue∗

University of California, Berkeley
Berkeley, CA, USA

sorakanosue@berkeley.edu

Jacob Yim∗

University of California, Berkeley
Berkeley, CA, USA

jacobyim@berkeley.edu

Figure 1. Diagram of the SEPO system, with a toy example

1 Introduction
Since the invention of compilers, computer scientists have
continually searched for ways in which their outputs can
be improved and made more performant. This problem has
been solved in a multitude of ways over the decades, through
techniques such as constant propagation, function inlining,
and peephole optimization. Each optimization seeks to lever-
age the semantics of the source and target languages of the
compilers to produce smaller assembly executables which
are able to run faster.
Previous approaches to compiler optimization which fo-

cus on improving the assembly outputs themselves have
traditionally focused on peephole optimizations, in which

∗Both authors contributed equally to this research.

rewrite rules known to be correct were applied to the com-
piler outputs to produce shorter sequences of instructions.
More recent work in the area has focused on superoptimiza-
tion, which instead focuses on finding the shortest sequence
of instructions which matches the semantics of a target pro-
gram.
In this paper, we present SEPO, a system for finding op-

timizations in assembly code by processing the states that
a RISC-V CPU would pass through, rather than operating
directly on the assembly instructions themselves as previous
work does. At a high level, our system takes in a RISC-V
program, and outputs an optimized version of that program
while maintaining its semantics. By symbolically executing
the program in order to find optimizations to perform, we are



Sora Kanosue and Jacob Yim

able to guarantee correctness by only performing changes
where the final symbolic state of the improved program is
equivalent to that of the original.
Our work takes an approach to assembly optimization

which, to the best of our knowledge, is previously unex-
plored, and provides a promising, fertile ground for future
work. In Section 2, we summarize previous work in peep-
hole optimization and superoptimization, and how our ap-
proach fundamentally differs. Section 3 provides a high-level
overview of our system, and a description of each part. Sec-
tion 4 provides an in-depth exploration of the implemen-
tation of our symbolic execution engine, while Section 5
details the optimizations we have implemented to this point.
In Section 6, we detail the (many) ideas we have for future
work related to this project.

2 Related Work
2.1 Traditional Compiler Optimization

Chakraborty provides an overview of research on peephole
optimization starting from its invention by William McKee-
man in 1965 [3]. Prior approaches involve pattern matching
(the traditional method), replacement of adjacent sets of in-
structions with fixed length, and replacement of instructions
modifying the same data unit.

2.2 Symbolic Execution for Compiler Optimization

To our knowledge, there is little existing literature on sym-
bolic execution for compiler optimization. Kloibhofer et al.’s
work on SymJEx stands out as one recent effort to automati-
cally infer compiler optimizations using symbolic execution
[4]. However, this work focuses largely on the implemen-
tation of a symbolic execution engine for the Java Virtual
Machine GraalVM, treating compiler optimization as a po-
tential use case. The approach used to accomplish these op-
timizations differs significantly from our proposed method:
the GraalVM optimizer still performs a pre-defined set of
optimizations on the Graal IR, using symbolic execution to
generate constraints and SMT solving to identify optimiza-
tions that satisfy the constraints. Our method, by contrast,
performs more general replacement rules based on stored
program state. Furthermore, Kloibhofer et al. target the Java
Virtual Machine GraalVM’s IR, while we hope to optimize
RISC-V assembly. During their evaluation, Kloibhofer et al.
find that some benchmarks achieve performance improve-
ments of up to 15%, but many benchmarks show no signifi-
cant improvement. We hope that by targeting a more simple

language with potentially fewer existing compiler optimiza-
tions and by leveraging a different strategy, our optimizer
will be able to achieve larger improvements.

2.3 Superoptimization

Much ongoing work in the compiler optimization domain
instead focuses on superoptimization, the problem of find-
ing the optimal sequence of instructions matching an input
and output state [8] [1]. This is largely a search problem,
which produces highly optimal results using very involved
computations. Traditional approaches to building superopti-
mizers functioned by performing enumerative searches over
increasingly larger programs, yielding superoptimizations
for programs of length up to 13 instructions [6]. More recent
work in the space has explored the idea of using stochastic
search methods such as Monte Carlo Markov Chain sam-
pling to increase the scale of superoptimization albeit at the
cost of sacrificing completeness [8]. Both these approaches
operate on programs, or sequences of instructions directly.
Our approach is orthgonal to this, in that we generate a
trace of states for a given input sequence of instructions, and
use those states to output an equivalent, more performant
sequence of instructions.

3 SEPO
Our system, SEPO, consists of a parser, a symbolic execution
engine, and an optimizer. SEPO processes arbitrary RISC-V
assembly and outputs optimized RISC-V. We implemented
SEPO in Java. SEPO is freely available online at https://github.
com/skberkeley/sepo.

The parser is responsible for identifying sections of straight-
line code and parsing RISC-V into an intermediate represen-
tation (IR). The parser processes unoptimized RISC-V code,
identifying all branching or jumping instructions. The in-
structions in between these branches or jumps are extracted
to produce a list of straight-line “segments.” Each segment
is a list of instructions encoded in our IR, which represents
each RISC-V instruction as a Java object.

The symbolic execution engine takes in a list of segments
in our IR. For each segment, it produces a trace, a list of
symbolic CPU states between every instruction. Each state
encodes the values in registers as well as memory. Details
about the implementation of the symbolic execution engine
are discussed in greater detail in section 4.

Finally, the optimizer takes in a list of instructions in our
IR and a list of CPU states to produce a list of instructions
that is optimized based on the states. Optimization is applied
to each segment individually to produce optimized segments,
which are then "stitched" back into the original programwith

https://github.com/skberkeley/sepo
https://github.com/skberkeley/sepo


SEPO: Optimizing RISC-V using Symbolic Execution

branching and jumping instructions. In our implementation,
we included one optimization, dead code elimination. Details
about this implementation are discussed in detail in section
5.

4 Symbolic Execution Engine
We implemented a symbolic execution engine capable of exe-
cuting straight-line blocks of RISC-V (RV64I) code, generated
by our parser. Since we chose to support only straight-line
pieces of code for this initial implementation, our engine
does not support branch or jump instructions.
In order to model the semantics of the RISC-V ISA, we

maintain two maps as state. One map represents the register
file in a RISC-V CPU, while the other models the memory
of the CPU. The symbolic nature of our engine comes from
the expressions which are stored as values in registers and
in memory, as well as the expressions used as memory ad-
dresses. The symbols present in these symbolic expressions
are generated when an uninitialized value is referenced. In
a fully fledged RISC-V CPU, these values would have been
initialized in an preceding block of straight-line code.

We designed SEPO so that the symbolic execution engine
outputs a trace of states that it passes through as the in-
structions are executed. In order to support this, we make a
copy of the register file and memory maps before executing
each instruction, and after the very last instruction being
executed. Once execution of a block of straight line code
completes, these states are outputted.

4.1 Value Representation

In order to accurately model RISC-V while accessing the
power of SMT solvers, we chose to represent values in SEPO
in a manner analogous to the theory of bitvectors. Support-
ing bitvectors required some engineering of our type sys-
tem to capture all the semantics of RISC-V instructions. The
most significant of these were Slices and Concatenations,
which we used extensively to accurately process memory
and 64-bit specific instructions. For example, stores often in-
volved slicing expressions into their byte components, while
loads entailed concatenating byte-sized values together.

4.2 Memory Model

We model the memory of the RISC-V system being exe-
cuted by mapping symbolic expressions denoting memory
addresses to other symbolic expressions representing the
values being stored at those memory addresses. To support
RISC-V’s semantics of loading and storing in denominations
of bytes, half-words, words, and double words, each byte
of memory is stored as a separate entry in the map. Then,

each load and store on an operand larger than a byte is
executed via the appropriate number of loads and stores
into the map. For example, a store word instruction to ad-
dress𝑀 is executed by splitting the value being stored into
4 byte-sized values and executing stores into the memory
map at addresses𝑀 ,𝑀 + 1,𝑀 + 2, and𝑀 + 3. For the sake of
the system’s simplicity, we do not support non-byte aligned
memory accesses. Since our load and store algorithms entail
checking the satisfiability or equivalence of certain expres-
sions, we use the Princess SMT solver [9] [7] to handle
this.

The algorithms in Figures 2 and 3 describe how loads and
stores into the memory map are executed. In these algo-
rithms, M denotes the memory map, M[e] the mapping of e
in M, M[e] := v updates or adds to M so that e is mapped to
v, and M -= e removes e’s mapping from M.

store(e, v):
for e' in M:
if is_sat(e = e'):
M -= e'

M[e] = v

Figure 2. Store algorithm for symbolic execution engine’s
memory model

When storing a value at a symbolic address 𝑒 , then every
value in memory whose address may be equal to 𝑒 may be
overwritten by the store being executed. To model this, we
remove every entry (𝑒′, 𝑣) from the memory map where the
expression 𝑒 = 𝑒′ is satisfiable.

load(e):
if e is concrete:
if !e in M:

M[e] := new_symbol()
return M[e]

else:
for e' in M:

if is_equiv(e, e'):
return M[e']

M[e] := new_symbol()
return M[e]

Figure 3. Load algorithm for symbolic execution engine’s
memory model

When loading a value from a symbolic address 𝑒 , then two
situations present themselves. The first is that 𝑒 can be sim-
plified to a concrete value 𝑣 , in which case we check whether



Sora Kanosue and Jacob Yim

the memory map contains a mapping for 𝑣 , returning it if it
does. If the memory map does not contain a mapping for 𝑣 ,
then we instantiate a new symbol, and map 𝑣 to it. Then, this
new symbol is returned. This case models load operations
from memory locations which were instantiated by a code
block previous to the one currently being executed by the
symbolic execution engine. If 𝑒 is symbolic, we first check
if the memory map contains any mappings for symbolic ex-
pressions equivalent to 𝑒 . If no equivalent expressions exist,
then 𝑒 could be concretized to a memory address not initial-
ized within the code block currently being executed, so a
new symbol is instantiated and 𝑒 mapped to it.

5 Optimizer
5.1 State Equivalence

We use the algorithm presented in Figure 4 to determine
whether two states in a trace outputted by our symbolic
execution engine are equivalent. Since parts of it require
checking whether two symbolic expressions are equivalent,
we enlist the help of an SMT solver [9] [7].

states_equiv(s, s'):
for reg in s.regs:
if !is_equiv(s.regs[reg], s'.regs[reg]):
return false

if s.mem.size != s'.mem.size:
return false

for addr in s.mem:
for addr' in s'.mem:
if is_equiv(addr, addr'):
if !is_equiv(s.mem[addr], s'.mem[addr']):

return false
else:
break

return false
return true

Figure 4. Algorithm to check whether two states are equiv-
alent

5.2 Dead Code Elimination

We define dead code to be code which can be removed with-
out affecting the functionality of the program from which
it is removed. In Figure 5, we present the algorithm used
by our optimizer to identify and eliminate sections of dead
RISC-V code. By iterating over the traces from the end in
the inner for loop, we guarantee that the dead code being
eliminated is as large a sequence as possible.

dead_code_elimination(trace, instrs):
for i in 0..trace.size:
for j in (trace.size - 1)..(i + 1):

if states_equiv(trace[i], trace[j]):
return instrs[:i] + instrs[j:]

return instrs

Figure 5. Algorithm for dead code elimination

We were successfully able to run our system with dead
code elimination on a toy example where we injected redun-
dant instructions into an assembly file outputted by GCC.
We were unable able to run the system on larger examples
due to compatibility issues with Z3 and versioning issues
with the prebuilt GCC tool-chain we used.

6 Future Work
6.1 Additional Optimizations

In this work, we only implemented one SEPO optimization,
dead code elimination. In practice, however, dead code may
not be common in compiled code, especially if traditional
compiler optimizations have already been applied. Thus,
extending the optimizer beyond just dead code elimination
is a priority for future work.
The natural successor to dead code elimination, which

can be thought of as finding different states which have
as the shortest path between them the empty sequence of
instructions, is to find non-consecutive states which are one
instruction apart. This would firstly involve finding states
which are separated by more than one instruction in the
original code block, but have the property that an instruction
can be constructed to transform the earlier appearing state
to one that is equivalent to the later one. We would then have
to actually construct this instruction to arrive at a shorter,
equivalent sequence of instructions. Identifying states which
are exactly an instruction apart may not be as difficult a task
as it immediately sounds, given that RISC-V instructions
only modify one value of state at a time.

The extension of this idea, then, would be to identify states
which are two instructions apart. This poses a more chal-
lenging problem than the above, since it would necessarily
involve generating an intermediate state which we do not
already have in hand. Once this intermediate state has been
concretized, then the connecting instructions can be gener-
ated assuming the above problem has been solved. Deducing
candidate intermediate states can potentially be aided by the
fact that most of their values should be unchanged from the
states that we identify to be close neighbors.



SEPO: Optimizing RISC-V using Symbolic Execution

6.2 Jumps and Branching Instructions

SEPO currently only performs optimizations on straight-line
code, as the parser separates instructions in between jumps
or branches into "segments" to be passed to the symbolic exe-
cution engine. Likewise, branching and jumping instructions
are not encoded in the symbolic execution engine, which
only tracks a sequence of states along a single branch. This
means that states across branches cannot be compared, and
some potential optimizations are likely missed.

In order to allow the symbolic execution engine to process
branches, it may be possible to attach path conditions to val-
ues in the states and memory. However, the path explosion
problem is a major limitation of this approach: the number of
paths in a program grows exponentially as branches are cre-
ated. Some existing works in this area attempt to address the
path explosion problem using strategies like state merging
[5]. Another challenge is processing loops, especially when
the number of iterations may be dependent on a symbolic
expression. More work must be done to determine whether
handling branches and jumps is feasible for our approach.

6.3 Improving Memory Representation

Currently, when storing values in memory at an address 𝑒 ,
the symbolic execution engine flushes entries at all memory
map addresses 𝑒′ that could be equivalent to 𝑒 . This means
that storing values at symbolic addresses potentially leads
to many values being wiped from the memory map immedi-
ately or after subsequent stores. Thus, a significant amount
of information is lost during memory stores, which could be
used to discover additional optimizations. One potential so-
lution is to add conditions to addresses in memory, such that
our memory model represents all possible destinations for
stores at symbolic addresses. While this approach is subject
to a similar path explosion problem to branching instruc-
tions, prior works like MemSight [2] address these issues
using state merging, among other optimizations.

6.4 Constant Propagation

One of the obstacles we faced during implementation was
that our symbolic expressions grew to such a size that the
SMT solver we were using, Princess, was unable to handle
them. Although using a more mature solver such as Z3 [10]
might have alleviated this issue, we believe that implement-
ing a version of constant propagation within our symbolic
execution engine would greatly improve its performance.
One example of how constant propagation might operate
could be to preemptively add two values if an add instruction

is being processed by the engine, rather than symbolically
encoding the addition.

6.5 Support for Assembler Directives

An idea closely tied to that of constant propagation is that
of adding support for assembler directives to our system.
For example, the GCC tool-chain we used to compile C pro-
grams to RISC-V code inserts static strings directly into the
RISC-V files and references them using assembler directives.
By adding support for assembler directives and using con-
stant propagation, we can reduce the amount of symbolic
expressions present in the states outputted by our symbolic
execution engine.

6.6 Control Flow Analysis to Enhance States

We believe that control flow analysis (CFA) of programs
could enhance the information available in each state, and
greatly improve the quality and quantity of the optimiza-
tions inferred from them. For example CFA could be used to
deduce whether any memory locations or registers contain
concrete values in them at the beginning of a given straight
line block of code. These concrete values would then be
propagated throughout the states as that block of code is
executed, reducing the number of symbolic values. Another,
potentially more powerful way in which CFA could be useful
is in deducing which values are live at the end of a straight
line block of code. Say, for example, that CFA reveals that x5
is referenced at some point after a block of code is executed,
but x7 is not. Then any optimizations our optimizer performs
should preserve the final value of x5, but no longer needs to
care what the final value of x7 is.

6.7 Extension to Other Assembly Languages

Although we chose to implement our system targeted at the
RISC-V RV64I instruction set due to the simplicity of the
ISA’s semantics, nothing prevents us from implementing
equivalent systems for other assembly languages, provided
we are able to model their semantics. Extending SEPO to
other instruction sets, like x86, LLVM, or other RISC-V ex-
tensions, would broaden its applicability.

6.8 Superoptimization

We believe that encoding assembly programs in terms of
states rather than the instructions themselves holds potential
as another avenue for approaching the problem of superopti-
mization. For example, for a given straight-line block of code,
the functionality of the block can be encoded in terms of the
start and end states produced by running the block through



Sora Kanosue and Jacob Yim

our symbolic execution engine. Then, the problem of su-
peroptimization can be reformulated as finding the shortest
sequence of instructions such that symbolically executing
them produces the same start and end states. It can also be
re-framed as a shortest path problem from graph theory, in
which the nodes are the states produced by symbolic execu-
tion and the directed edges between them the instructions
which transform one state to another.

7 Conclusion
In this work, we present SEPO, a system for optimization of
RISC-V assembly based on symbolic states. We contribute
1) a framework for compiler optimizations based on traces
of program state generated using symbolic execution, 2)
an implementation of the symbolic execution engine used
to generate these traces, and 3) an implementation of one
symbolic state based optimization. We believe that symbolic
execution and symbolic state based approaches hold unex-
plored potential for future work in program optimization,
and hope that this work enables further research in this area.

References
[1] Sorav Bansal and Alex Aiken. “Automatic generation of peephole

superoptimizers”. In: Proceedings of the 12th international conference
on Architectural support for programming languages and operating
systems. ASPLOS XII. New York, NY, USA: Association for Comput-
ing Machinery, Oct. 20, 2006, pp. 394–403. isbn: 978-1-59593-451-2.
doi: 10.1145/1168857.1168906. url: https://dl.acm.org/doi/10.1145/
1168857.1168906 (visited on 10/04/2023).

[2] Luca Borzacchiello et al. “Memory models in symbolic execution:
key ideas and new thoughts”. In: Software Testing, Verification and
Reliability 29.8 (2019). e1722 stvr.1722, e1722. doi: https://doi.org/10.
1002/stvr.1722. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/stvr.1722. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
stvr.1722.

[3] Pinaki Chakraborty. “Fifty years of peephole optimization”. In: Cur-
rent Science 108.12 (2015). Publisher: Current Science Association,
pp. 2186–2190. issn: 0011-3891. url: https://www.jstor.org/stable/
24905654 (visited on 12/11/2023).

[4] Sebastian Kloibhofer et al. “SymJEx: symbolic execution on the
GraalVM”. In: Proceedings of the 17th International Conference on
Managed Programming Languages and Runtimes. MPLR ’20. New
York, NY, USA: Association for Computing Machinery, Nov. 4, 2020,
pp. 63–72. isbn: 978-1-4503-8853-5. doi: 10.1145/3426182.3426187.
url: https://dl.acm.org/doi/10.1145/3426182.3426187 (visited on
10/04/2023).

[5] Volodymyr Kuznetsov et al. “Efficient state merging in symbolic
execution”. In: Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (2012). url:
https://api.semanticscholar.org/CorpusID:135107.

[6] Henry Massalin. “Superoptimizer: a look at the smallest program”.
In: ACM SIGARCH Computer Architecture News 15.5 (Oct. 1, 1987),
pp. 122–126. issn: 0163-5964. doi: 10.1145/36177.36194. url: https:
//dl.acm.org/doi/10.1145/36177.36194 (visited on 12/12/2023).

[7] Philipp Rümmer. “A Constraint Sequent Calculus for First-Order
Logic with Linear Integer Arithmetic”. In: Proceedings, 15th Inter-
national Conference on Logic for Programming, Artificial Intelligence
and Reasoning. Vol. 5330. LNCS. Series Title: Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 274–289. isbn: 978-3-540-89438-4. doi: 10.1007/978-3-540-89439-
1_20. url: http://link.springer.com/10.1007/978-3-540-89439-1_20
(visited on 12/11/2023).

[8] Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic superop-
timization”. In: ACM SIGPLAN Notices 48.4 (Mar. 16, 2013), pp. 305–
316. issn: 0362-1340. doi: 10 . 1145 /2499368 . 2451150. url: https :
//dl.acm.org/doi/10.1145/2499368.2451150 (visited on 10/05/2023).

[9] sosy-lab/java-smt. original-date: 2015-11-18T11:36:07Z. Dec. 11, 2023.
url: https://github.com/sosy-lab/java-smt (visited on 12/11/2023).

[10] Z3Prover/z3. original-date: 2015-03-26T18:16:07Z. Dec. 12, 2023. url:
https://github.com/Z3Prover/z3 (visited on 12/12/2023).

https://doi.org/10.1145/1168857.1168906
https://dl.acm.org/doi/10.1145/1168857.1168906
https://dl.acm.org/doi/10.1145/1168857.1168906
https://doi.org/https://doi.org/10.1002/stvr.1722
https://doi.org/https://doi.org/10.1002/stvr.1722
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1722
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1722
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1722
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1722
https://www.jstor.org/stable/24905654
https://www.jstor.org/stable/24905654
https://doi.org/10.1145/3426182.3426187
https://dl.acm.org/doi/10.1145/3426182.3426187
https://api.semanticscholar.org/CorpusID:135107
https://doi.org/10.1145/36177.36194
https://dl.acm.org/doi/10.1145/36177.36194
https://dl.acm.org/doi/10.1145/36177.36194
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
http://link.springer.com/10.1007/978-3-540-89439-1_20
https://doi.org/10.1145/2499368.2451150
https://dl.acm.org/doi/10.1145/2499368.2451150
https://dl.acm.org/doi/10.1145/2499368.2451150
https://github.com/sosy-lab/java-smt
https://github.com/Z3Prover/z3

	1 Introduction
	2 Related Work
	2.1 Traditional Compiler Optimization
	2.2 Symbolic Execution for Compiler Optimization
	2.3 Superoptimization

	3 SEPO
	4 Symbolic Execution Engine
	4.1 Value Representation
	4.2 Memory Model

	5 Optimizer
	5.1 State Equivalence
	5.2 Dead Code Elimination

	6 Future Work
	6.1 Additional Optimizations
	6.2 Jumps and Branching Instructions
	6.3 Improving Memory Representation
	6.4 Constant Propagation
	6.5 Support for Assembler Directives
	6.6 Control Flow Analysis to Enhance States
	6.7 Extension to Other Assembly Languages
	6.8 Superoptimization

	7 Conclusion

